HEAT CONDUCTION WITH VARIABLE HEAT
TRANSMISSION COEFFICIENTS

P. V. Tsoi UDC 536.2.01

An analytical method is shown for determining the temperature field of a body whose variable
thermophysical properties are functions of the space coordinates. The problem is solved for
a plate and for a cylinder where the thermal conductivity is an exponential function of one
space coordinate,

Exact analytical methods of solving the equations of heat conduction with variable coefficients have
been so far developed for only a very limited range of problems [1]. Essentially, solutions have been ob-
tained for the one-dimensional case in a half-space (0 =x = =), Moreover, as a rule, closed solutions
are expressed in the form of unwieldy functional relations. For this reason, in engineering thermophysics
one prefers approximate methods even when an exact solution to a boundary-value problem is obtainable.
We will consider the boundary-value problem of heat conduction in a nonhomogeneous medium  with vari-
able thermophysical properties, in the following coordinate notation:

c (M) y (M) %t?l — div[L (M) grad T (M, 0] - q (M) T (M, 1) - W (M, 1), (1)
[T (M, Dlimg = (M), [T (M, ] =, 5, @

where M is any given point with coordinates x, y, z (M€Q), M' is a point on the boundary I", and ! is the
first- or second-order differential operator in space coordinates.

Let

T*(M, 5) = | T(M, t)exp(—st)dt,
0

then the boundary-value problem (1), (2) in Laplace transforms becomes

div A (M) grad T* (M, sy} =~ {g (M) — cys] T* (M, s) —cyf (M) +W= =0, 3)
l [Tk (M’ S)]r = (P* ("’M,v S). (4)
An approximate solution to the boundary-value problem (3), {4) is found in the form of a vector sub-
tending the coordinate functions y; M), #(M), ..., ¥p(M) in some n-dimensional functional space ¥
TEM, 51 - ®*(M, s) -~ S ak (5)¢, (M). ()

k=1
Functions i (M) are continuous, as are also their first derivatives, they are linearly independent, and they
satisfy the homogeneous condition

114, (M)],. = 0.

The initial vector ® *(M, s) is subject to condition (4). The coefficient transforms af{k(s) are projections of
vector Tr’f (M, s) on the coordinate axes and are found from the requirement of an orthogonal divergence

e, [af(s), a¥(s), ..., a¥(s), M].-div hgrad TF) - (g —cys) TF -+ cyf -~ W*== 0

imposed on all coordinate functions (2]
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((fe,pam=0 G=1,2 ..., 0. ©)

CQ

Integrating over the space Q transforms the last system into an algebraic system of linear equations in co-
efficients ai* (8)y «v0» arf(s). The fundamental determinant of system (6) is a Gramme determinant not equal
to zero in any choice of coordinate functions. After calculating the coefficient and performing an inverse
transformation to original functions in (5), we arrive at the solution to the original problem.

We let 2{0 =x =1}, cy=const, A= Ae™™X, W =0, and q = 0 so that Eq. (1) reduces to

aT o (. _ T
—_— = Ay — .
Vo ox ( 0 6x) @)

An approximate solution to this equation, under the uniqueness conditions
TO, =0 T{ H=e¢@), Tix, 0)=0 (8)

is found in. Laplace transforms as the following family of functions:

[

T (x, 5) = :::11 o* (5) + 2 ak(s) (1 —%)(—})k ©)

k=1

At constant boundary values (¢ (t) = T, = const) this solution, in the first approximation, reduces to

T (x, Fo) et —1 ( X ) X
= 4~ (1—— | — exp[—B(x)Fo, 1
T, el )7 SRl (10)
where
Blo) — 30 [(a? — 4ot - 8) — e~% (& - - 4o -+~ 8)] ’ 1)
a?x
ot by
o =ml, Fo=-"2 g5 =2,
l'.’. cy
At the limit, according to 1'Hopital's rule, we obtain
lim B (o) = 10, lim ot . X
-0 m-0 ghi—-1 !
Solution (10) at the limit m — 0 is
T (x, Fo) x [ x x :
— =l — | —~exp(—10 Fo). 12
T, -1 ( 1 ) 1 pe ) (12)

In this way, when @ — 0 (m! =< 0.1), the approximate solution (10) almost coincides with the well known so-
lution for a plate with constant heat transmission coefficients [2]. Solution (10) at Fo — « approaches the
exact solution corresponding to the steady-state problem [1].

For an infinitely large plate @{—R = x =< R} with symmetrical boundary conditions, problem (1)-(2)
reduces to .

aT __a_l—mjtl_?l ":—_i —
aFo_OE(e , ag)‘g 7 mR, (13)
T(Er 0): T01 [T (Es FO)]§.=:,:1': (P(FO) (14)

Without detracting from the generality of this method, we let ¢ (¥Fo) = Ty(1 + PdFo), (Pd = sz/Toao) and
obtain in transforms

A (et 4T N s T 15
p (e i ) sT*E, s) -+ Ty =0, (15)
v -
T*E g1 =" ) =T, (}L + %i-) ' ( dd§ )é =0 1o
. =0

An approximate solution to the boundary-value problem will be sought within the family of linear compo-
sitions

T*E 5) = ¢*(s) +ap (s)[ & (1 — »(ID—) _._efig%—ﬁ_} + kg ax () (1 —E2) B, (17)
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The first coordinate function in solution (17) has been selected equal to the solution to the equation
9 (e—wéﬂ) = T,Pd,
3 43

except for the constant coeificient.

The relative excess temperature is, to the first approximation, written in the form

8(, Fo, Pd, o) — l@._%)___’&’_ :.-Pd{Fo——[l—exp(wA (@) Fo)l [i:—(l»——:)—)— ‘f’ (g——i—m . (8)

where

41e® (0 — 20° -- 200%) — 207
¢ (40" — 1402 - 220 — 11)— 16e” (@ —1) —5

Afw) = (19)

In the quasisteady mode (exp(—A(w)Fo,) ~ 0), solution (18) yields

0@ Fo, o) _ (1A _ (. 1)] FonF 20
— 1 e\ m)_‘m—(g_‘m)’o/ o )

N

which coincides with the exact solution.

After removing the indeterminacy according to 1'Hopital's rule, we have

lim A () = 2,5, lim [i-( 1— -L\) mﬁf(§~i—)} :—1—(1 —&%).

a0 60 [0} [0 [0} ) 2

/

At w — 0 expression (18) becomes

f

The temperature in thin plates (w = mR =< 0.2) can be calculated according to formula (21), which happens
to be the solution with a constant thermal conductivity [2].

0 (&, Fo, Pd, 0) —Pd{Fo——;—(l )1 — exp (—2,5F0)] |. @1)

For an infinitely long cylinder Q{x% + y? = R2} we let A = Ae™T, cy = const, and p? = (t/R)? = ¢2 + 7’
= 1 so that Eq. (1) can be written as

L[S (eI 2 (T ] )
ot | ox Ox dy dy
In cylindrical coordinates and with symmetrical boundary conditions
T (p, 0) =Ty, [T(p, Follgy = @ (Fo) (23)
Eq. (22) reduces to
2
Eze(op( aT ___1_ E‘m.ﬂ) (24)
dFo . 0p* o dp ap |
We will now assume that
lim ¢ (Fo) = T, = const, (25)
Fo-»o

Then steady state prevails in the cylinder and 8T/6Fo = 0. Integrating the equation

mp(a?'T o1 oT | aT‘)
e —t s — 0 — =1
\ -0p* e Op o
we obtain
aT —op
— =
Y 3

Since (p(aT/Bp))pzo = 0, hence C = 0. When (T)p=y = T = const, therefore, then T(p) = Te will be the so-
lution to the equation, i.e., the temperature field becomes uniform under steady-state conditions in a con-
tinuous nonhomogeneous cylinder, just as in a homogeneous cylinder. While satisfying the condition (25),
we seek the solution to problem (24), (23) in the transform domain:
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CTH, 9) =0 (5) + Xyaf () (1 —p?) p2tr D, (26)
k=1 - ’

We construct the divergence for the equation

4 ( dr* dr*
b G R LA @

at T*(p, 8) = T, (o, s) and we require that the resulting expression be orthogonal in function (p) = (1—p?),
in order to obtain

1 1
{26°° 20 + 00?)(1 — %) -+ s (1 — 0¥} dp— [T, —s¢* (5)} | (1 —9? pdp = 0,
0 . ¢

from where

3 . . B}
af (s) = 5 [To—s9* ()]s + A (@)1, (28)
where v .
’ @O (Dend 21 — ]
Ale) = 12 [e® (20 - 60® - 120 —12) - 12] . (29)
0)4
when ¢(Fo) = TC = const, the relative excess temperature is, to the first approximation,
T (p, Fo)—T, 3
8 (o, Fo, @)= ToFo—T, — (1 —p?*exp|—A (o) Fo]. (30)
T,—T, 2

The relative excess temperature inside a cylinder, with an exponential temperature drop across the
wall

¢ (Fo) = T, + (T, — T exp (—Pd Fo)

is, to the first approximation,

_TeF)—Te 0 (—PdFo) - {exP [—A (@) Fo]

0 (p, Fo, Pd,
0 ) To_T. 9

1

SN —PdFo)— A —A (@) Foyl (1 — po).
B PP (PO — A exp (A ) Fol (1 — ¢ @1

In those cases where condition (25) is not satisfied the convergence of the approximate solution to the sys-
tem canbe improved by selecting the coordinate functions as follows. As the first coordinate function we
select, accurately down to the constant coefficient, the solution to Eq. (24) for the quasisteady-state peri-
od. TFor a linear temperature rise at the boundary (¢ (Fo) = Ty(1 + PdFo)), for example, we let 8T/0F0
=PdT,in Eq. (24). For the quasisteady mode, then, the solution to the boundary-value problem (24), (23)
is written as

. v -
T (0, Fo, ®, Pd) = T, (1 -~ Pd Fo)— Pd T°_ [8‘“’ (—1—— -+ L ——(——Q* + —l—) eop J . (32)
; 2 ) ©? ® o R

When the surface temperature rises linearly, therefore, the temperature field inside a cylinder will be
sought in the form

. 1 1 o 1 &
— ¥ — — [ R B oA D * a2k
T s 9 =90 a0 (oo L) = (Lo )] £ S aoa—m, 33
For simplicity, we will seek the solution to the first approximation only. The determining system (6) re-
duces to . '
e~ (@ 4 30+ 6w+ 6) —6

0)4

@) [
s 20 (4o* + 200° + 540? - 780 +39) —48 (0 + N)e - 9
8ot . ]
_ Tgpd [ 6 —e¢ 2 (0® + 3w + 60 4 6) J
= = ,

S
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TABLE 1. Approximate Eigenvalues and Functions

n

s{m ,
& exact
I ' I ] ; I values
n=1 n=3 n=4 ! n=>5
Py 10,5 ' 8751 i 9,8696 [ 9,8696 ] 9,8696 [ 9,8696
P { 50,1246 ’ 39,9978 ] 39,4893 | 39,478¢ $ 39,4784
2==3 ! [ J 142,6322 ‘ 94,1187 ‘ 88,8825 } 88,8264
f=t | | | | 3245055 } 194,4327 | 17,9137
e ) i
k=5 | ; [ | l 515,2573 [ 246, 7401
T 1,9999 — 3,_2858(;5,— 1,6178p* — 0,3691p8 -- 0,0402 p*

- 1,9661 - 12,50720 —- 22,4460p* -— 16,284805 -— 1, 3799p8

#AM < 1,6381 — 19,6261p2 -~ 60,7957p1 — 68,5992p —- 25791808

i e 1,1642 — 18 95940 - 78,3586p% — 114, 8404p® < 54,2570p
from where
PdT, 1 1
sy = ——"=t e |
2 |s s 4+ D(w)

with
8w® [¢~® (0® + 30* - Bw) — 6]

D =
@ =% (4o* + 200® - 54w? + 78w - 39) —48 (0 + 1) g2 -1 9

(34)
The relative excess temperature is written as

8 (p, Fo, Pd, m):ﬂ&M: Pd[
T, |

[ D))

The solution to Eq. (35) at a sufficiently large Fo coincides with formula (32).

Fo — % [ —exp (— D (o) Fo)]

We calculate the limits by 1'Hopital's rule and obtain

’ ’ A A 1 .
lim D (w) = 6, lim[e*‘ﬂ( lf“’)—e—mo(&—)—”=7(1—p-).

w-0 w” * /

At the limit w — 0, Eq. (35) yields the corresponding approximate solution for a cylinder with a constant
thermal conductivity (hm Ae “p < Ag)

8 (o, Fo, Pd) — {Fo~— i (1 —p?) [1 — exp (— 6Fo)]} Pd. (36)

In relation (33), when n = 2, the limits have the following properties:

lim sa}(s) = lim @, (Fo) = — 0% linsa’ (s) = lim a, (Fo) =0 (& = 2),
s=0 Fo-»w 2 50 Fo—o

i.e., the solution in the successive second, third, and following approximations approaches an asymptote
at Fo — « which coincides with the exact solution for the quasisteady mode.

In order to compare the approximate solution obtained by this method with the well known exact solu-
tions, we will show here calculations of the temperature inside a homogeneous sphere with boundary con-
ditions of the first kind.

The relative excess temperature is, to the first approximation,
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0 o 92 Fo_ T (o, Fo)—T S
TG [}] er"FO et P V6 1) (n)(p ex (_s(ﬂ)Fo, 37)
3é s o F) =~ = MR D e (s F
0% _05\ - g4 where fl({n)(p) are polynomials in even powers 2n. The calculated eigen-
' 2| values up to the fifth approximation and the values of functions fl({n) v)
for n =4 are shown in Table 1. A close agreement is evident between
I\ the eigenvalues and the exact values. The polynomial ff‘*)(p) almost co-
902 106, p v (I \\ 9 incides with the first eigenfunction 2 sin mp/mp in the exact solution.
\\ We multiply Eq. (37) by 3p?% and integrate from 0 to 1, which yields
ol 0 6, (Fo) = 0.6079 exp (— 9.8696 Fo) --- 0.1523 exp (— 39.4893 Fo)
"g25 075 g45 ko ]
’ ’ ’ - 0.0853 exp (—94.1187 Fo) -1- 0.0999 exp (— 157.9137 Fo).  (38)
Fig. 1. Mean relative temper- Integrating the first four terms in the exact solution, we have
ature § a; a f‘;nctif‘m of thehFOHr' , (Fo) = 0.6079 exp (— 9.8696 Fo) -+ 0.1520 exp (— 39.4784 Fo)
ier number Fo, for a sphere; )
! — . — 37 Fo).
the dots represent value cal- - 0.0675 exp (— 88.8264 Fo) -~ 0.0038 exp (— 157,9137 Fo) (39)
culated according to formula Obviously, the exact solution is Gw(0) = 1. From (38) and (39) we have
(38). 94(0) = 0.9454 and ,(0) = 0.8388. The maximum errors in solutions

(38) and (39) are 5.56 and 16.88Y% respectively, when Fo = 0. On the
whotle, solution (38) converges better than solution (39).

Solution ¢,(Fo) is compared with the exaet solution graphically in Fig. 1.

When the specific heat and the thermal conductivity both vary according to a symmetrical law
I - X
_ ey =cW(l +0|E)" A=kl +alE), -—1~<g=~1—?—\<1
and when the boundary conditions are symmetrical (14), then the temperature field inside Q{—1 = ¢ = 1}
is an even function of variable £. For this reason, for an infinitely large plate Eq. (1) reduces to
' oT ] T )

14— = —1 (1 o — 1, 0 JELL 40

1+ 5oy ag[(+§) ag} : (40)
Since the derivative of functions A = Aj(1 + wl D is discontinuous at the point £ = 0, hence the derivative
8T /8¢ is a discontinuous function at the center of a plate (¢ = 0) and (8T/a§)§:0 = 0 is possible even with
a symmetrical temperature profile across the plate thickness. Consequently, an analysis of the problem
on the interval 0 < £ =< 1 brings the singular point £ = 0 to one end of that interval, inside which the tem-
perature together with its derivative remain continuous functions. In this case the condition (0T /8%) £=9
= 0, which is necessary when the thermal conductivity is constant, may not prevail here.

Let us assume that the wall temperature becomes a linear function when Fo is sufficiently large, i.e.,
that

lim _9Fo)

= const, (41)
Fo-wx Fo

and then the temperature inside a plate will be an asymptotic function during the quasisteady period.

In Eq. (40) we let 8T/8 Fo = TPd, and the solution for zero boundary values at point £ = 1 will then

be
TE, o m n, Pd)=—ole {[ (LF B (14 ef)i ]
oX(m+ 1) (m—n-+2) 1 —n
_[ Cram?” Q4o ]}- )
(m—n-2) 1—n) |

The solution to problem (40), (41) in Laplace transforms, with condition (41) satisfied, is sought in the
form

» - » (1 +Ew)m_”+2 . (1 L Em}l'"
Ts@E s, Pd)=¢ (5)‘*‘“1(3){[ (m—n-2) 1—n ]
— (1 + @ym™*2 _ (1 + o)™ | U * e Rk

[ (m—n-2) 1—n .”T;:ak(s)(l B EED, (48)
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Having determined the coefficients af{k(s) and performed inverse transformations, we find the solution
to the original problem. With the given choice of coordinate functions, the following equalities hold true
for the limits

PdT, <
lim sa; (s)w 11m a; (Fo) = ——2—, limsaj (s)— hm i a (Fo)y=0 (£>2).
50 2( %‘1) (S0
If the wall temperature satisfies the condition hm ¢ (Fo) = T, then an inverse transformation of 43) will
yield for the quasisteady mode (Fo = Fo,)

T, Fo, Pd, ) =T, (1 + PdFo) 4

PdT, {[ (1 + goym e

o?(m+ 1) m~—n-2
{1 4 Eo)t™" ] __[ (I oy (14 o)t™ ]} . ) (44)
l—n m—n 42 l—n

We note that

fim {[ (L+Eaymme2 (1+w§>1'"}
ol m—n+2 1—n
. (I + o2 (14 @)t ‘1 o m
{ m—n-2 pura i L

and, to the first approximation, the temperature field (43) in the original domain at w — 0 coincides with
solution (21).

Since the thermophysical coefficients A and cy cannot be equal to zero, then the equation of heat con-
duction (1) does not generate into a line or a point inside region Q. Its solution will be a continuous func-
tion of the coefficients. If coefficients A and cvy are functions of the point M and of the variable w, and if
the conditions

lim A (M, @) -:ky=const, limey -=epy, - const,

w0 ©-0
are satisfied, then the solution to the boundary-value problem (9), (2) is a continuous function of the vari-
able w. At w — 0 the solution approaches the solution of the corresponding problem with constant heat
fransmission coefficients.

Thus, the described method makes it feasible to analyze the temperature field in one~dimensional
and multidimensional cases, in both classical and nonclassical formulation, when the heat transmission
coefficients are variable.

With Fo replaced by X = (1/Pe) - (z/R) in the equation of heat conduction, our method will yield ef-
ficient solutions to internal problems of convective heat transfer during turbulent flow through pipes and
channels, just as has been shown in [2] for laminar flow.

NOTATION
T*M, s) is the Laplace integral transform of the temperature T(M, t);
5 is the Laplace operator;
MEx, ¥y, 2) is a given point in region Q;
T is the boundary of region Q;
Pd = sz/aoTo is the Predvoditelev number for the case of a linearly rising wall temperature;
Pd = bR?/a is the Predvoditelev number for the case of an exponentially rising wall temperature.
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